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Rigorous Analysis of Multiple Coupled Rib
Waveguides

Tullio Rozzi, Fellow, IEEE, M. N. Husain, and Leonardo Zappelli

Abstract—The general problem of multiple coupled rib wave-
guides, where energy may be leaked from one guide to the other
via the substrate and radiation mode, is of great practical and
theoretical importance. Rigorous results including substrate
and air modes coupling are hard to find for the general case of
coupling of two or more different guides, due to the consider-
able complexity arising. In this contribution, we develop the
analysis in terms of a cascade of the transverse steps, utilizing
a variational solution with a single trial function and making
explicit use of edge singularities at the dielectric corners in or-
der to produce an effective and rigorous solution. Multiple cou-
pled rib guides are then reduced to a cascade of interacting step
discontinuities in the transverse direction. Where comparison
is possible the numerical results obtained by the method are
seen to be as accurate as those obtained by the FEM/FDM
methods, but with a fraction of the computer time and memory
involved.

I. INTRODUCTION

OUPLED structures play a very important role in the

field of millimeter waves and integrated optics. Ar-
rays of coupled dielectric antennas are interesting for mil-
limetric applications and laser arrays may be realized us-
ing coupled rib guides. The feasibility of fabricating such
- devices using coupled guides has been demonstrated and
‘the near field and propagation characteristics of such ar-
rays are already of great practical importance in integrated
optics. As a consequence, accurate theoretical analyses of
coupled structures are essential to the design of devices
that meet specific requirements and criteria.

Coupled rib guides in a parallel plate configuration have
been studied in [1] by transverse mode matching. There
are no truly exact analytical method available for the anal-
ysis of multiple coupled rib waveguides in the open con-
figuration. Approximate methods currently in use have
mostly relied on either the EDC method [2]-[4], or cou-
pled mode theory which is appropriate for weakly coupled
systems [5]. The approach in [5] assumes the individual
guided modes to be orthogonal in the coupled structure.
An improved coupled mode theory [6], [7] which re-
moves the assumption is also available. However, the
EDC and the coupled mode theory fail to model the ef-
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Fig. 1. Geometry of the coupled rib waveguides.

fects arising from leakage of energy via the substrate and
the air regions, particularly, in the millimetric case. This
effects may also be significant at optical frequencies, par-
ticularly if the rib height is large, where the interaction
effects via the continuum cannot be neglected. For more

-accurate results, sophisticated numerical techniques such

as Finite Element Method or Finite Difference Method are
used [8]. The most important drawbacks of this approach,
is the excessive computational effort needed for accurate
results, as the area and hence the number of mesh points
is doubled with respect to that needed to analyse a single

.guide. Moreover, FEM/FDM become extremely cumber-

some for situations more complex than that of two iden-
tical closely coupled guides, as shown for instance in Fig.
1. This is the typical problem we are addressing in this
contribution. We are considering pure LSE and LSM
polarizations but extension to the hybrid case is straight-
forward though more cumbersome. The approach adopted
in this work is consistent with that used in [9] for the sin-
gle guide. The analysis is followed by application to the
case of the directional coupler, three guide coupler,
closely spaced unequal guide and wave guide arrays.
Wherever possible, results of the present method and of
the FEM/FDM analysis ate compared to demonstrate the
effectiveness and the accuracy of the method. As will be

> shown, the method of analysis presented in this work

yields accurate results with a computational effort only
slightly greater than that needed to analyse a single guide
according to [9]. ‘

II. THEORETICAL APPROACH

The cross sectional geometry of coupled rib wave-
guides under consideration is shown in Fig. 1. In the
framework of Transverse Resonance Diffraction (TRD),
this configuration is seen as that of four cascaded step
discontinuities in the transverse direction. Qur aim is to
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derive a variational solution of the step problems that uti-
lizes a single test function, the *‘transition function’’ de-
veloped in [9] in order to expand the unknown interface
field. Using a single test function at the interface yields a
simple two port equivalent network representation of the
coupled structure such as shown in Fig. 2. Consequently,
the analysis of the transverse cascade reduces to that of
solving the two port network, which is easily effected by
standard network technique. In order to derive the varia-
tional expression for the parameters of the two port net-
work shown in Fig. 2, let consider the cross sectional ge-
ometry of Fig. 3 which represents the basic building
component of the coupled structure in Fig. 1. In this case,
the analysis is complicated by the presence of the two step
discontinuities at x = 0 and x = L (see Fig. 3). Consid-
ering the transverse propagation of LSE and LSM modes
in such a structure, at each step discontinuity, continuous
modes are excited and multiple reflections of these modes
occur between the two steps. In applying standard trans-
verse resonance to this situation, interaction via the con-
tinuous modes is ignored, i.e., a small step approximation
is assumed. If this is done, then the uniform region and
the step discontinuity can be represented by a transmis-
sion line and ideal transformer, respectively. Interaction
via the continuum between the steps at x = O and x = L
of Fig. 3, however, is not representable by means of a
finite number of transmission lines coupled at the discon-
tinuities, as in a closed waveguide.

Hence, we abandon the transmission line analogy and
adopt instead a two-port, ‘‘Tee’’ representation of each
region between two successive steps. Its open-circuit
impedance, short-circuit admittance parameters are ob-
tained by placing a magnetic/electric wall at x = 0, L in
turn. Under ‘‘open circuit’’ and ‘‘short circuit’’ condi-
tions at x = 0, L, integral operators are found relating the
total £ and H fields at various ports and then these are
used to relate the total fields at each port to one another.
This operator method was introduced in [10] in the treat-
ment of cascaded longitudinal step discontinuities in slab
waveguides. In that approach the field at each interface
was developed in terms of a suitable set of expanding
functions, a variational expression was derived and mul-
tiport analysis was finally used to model the cascade. Al-
though those concepts scem directly applicable to the
present problem, numerical effectiveness in solving a
trangverse resonance equation would be limited by the size
of the network matrix, containing integrals over the con-
tinuum in each element. Moreover, the interface fields in
the longitudinal step discontinuities are complex and con-
sequently a complex trial field is needed to accurately ¢x-
pand them. Hence, a solution based on Galerkin’s method
is more appropriate to that situation. By contrast, in the
present case, losslessness of the bound mode requires the
interface fields at the transverse step discontinuities to be
real. This suggests that the interface field be represented
by a suitable real function. In this work, the interface field
is approximated by a single ‘‘transition function,”” inclu-
sive of the edge conditions in the L.SM case as in {9]. As
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Fig. 2. Equivalent network representation of the coupled structure: (a) LSE
case; (b) LSM case; (¢) Neglecting interaction via continuous modes.
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Fig. 3. Unit cell of the couplcd structure showing double step- disconti-
nuity in the transverse x-direction.

a consequence the numerical complexity of the problem
is substantially reduced, avoiding the use of matrices al-
together. Furthermore, this formulation leads to an equiv-
alent network model of the structure represented by a cas-
cade of “T”" o ’ two port networks as shown in
Fig. 2. ,

LSE ANALYSIS

Consider the situation where slabs 1 and 3 of Fig. 3 are
semi-infinite. The relationship between the transverse

. electric E (z-directed) and the transverse magnetic ﬁeld H

(y- dlrected) atx = 0~ is given by [9],

EQ, y)

= - S_m Zi(y, y") [-HQO, y")] &y’

= —Z,[—H(©, y')] , D
where
Zi(y, y') = "»{201 V(M ¥m(y")

+ 2

. p=e0

So 201(0) Y1 (¥, ) Y1 (y', p) dp

+ So 201(0) Y (¥, ) ¥ (y’s 0) dtf] )
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Z(y, y") is the Green’s impedance function of the semi-
infinite slab 1. ¥,,(¥) is the modal field of the surface
wave with characteristic impedance zq;; ¥4.(v, p) and
Y11y, p) represent the even and odd air modes with char-
acteristic impedance zo(p) and ¥, (y. ¢) the substrate
mode with characteristic impedance zy,(0).

Similarly at x = L*, we have

E(L,y) = S_ Zy(y, y')[-H(L, y")] dy'

Zy[—H(L, y)] 3)
where

Z3(y,¥") = 23 ¥ ¥ (y")

oz SO 203(0) Y (3 ) ¥V, ) dp

+ So 203 ¥ (y, D Ya(y’, 0) do. 4)

Zy(y, y') is the Green’s impedance function of the semi-
infinite slab 3. y;3(y) is the modal field of the surface
wave with characteristic impedance zy3; V,.3(y, p) and
Vio3( ¥, p) represent the even and odd air modes with char-
acteristic impedance zo3(p) and y¥,3(y, o) the substrate
mode with characteristic impedance zg3(o). The charac-
teristic impedance for air and substrate mode for slab 1
and 3 are the same given by

Z01(p) = Zo3(p) = zo(p)
Z01(0) = zp3(0) = Zp(0).

7, and Z, can be viewed as the driving-point impedance
operators of the semi-infinite slabs 1 and 3. In order to
relate the total fields at x = 0 and x = L in the region 2,
a magnetic wall is placed at x = 0 and x = L in turn and
the relationship between the transverse E and transverse
H field for cach condition is derived. With a magnetic
wall at x = L, the transverse electric field E(0, y) excited
by magnetic field H(0, y) is given by

EQ, y) = S‘m Zi(y, y)[—HQ, y")] dy’

= Z,[—H@O, y')] )
where

Zi1(¥,¥") = zop coth (v L) dpa(¥) dpa(y')
+ 2 SO 2o(p) coth (y,L)
p=e0 ,
* Bpa(ys 0) Gr2 (Y, ) dp

+ So zo(0) coth (9, L) ppn(y, 0)

© Py, o) do. (6

Moreover, under the same boundary conditions, we have

EL,y) = Sw Zy(y, y')[—H(, y")] dy’

Z,[—H(, y")] 7
where

Zy (¥, ¥') = zop cosech (v L) dpp(¥) pa(y')
+ 2

p=e,0

So 2o(p) cosech (y,L)

: ¢hu2(y7 P) ¢)hp2(y” p) dp

+ So 2o(0) cosech (1, L) d)(y, 0)

oy, o) do. (8)

When a magnetic wall is placed at x = 0, we have by
symmetry:

EL,y) = Zyl-HL, y) )

and
EQ,y) = Zp[—H(L, y")]

where 222 = _le and 212 = _221.
Combining (5), (7), (9), and (10) we obtain a ‘‘two
port’ Green’s open circuit impedance operator for the

section 0 < x < L given by
{E(o, y)} _ [Z:n —z:zl} {—H(o, y)] a
EL, y) Zy —ZyJL-HL,y
In (2), (4), (6), and (8) we have implicitly assumed that
just one surface wave (in y) may be supported by the slab

waveguides, and the various value of characteristic
impedances are given by

10)

2 = JOBO Yshi . _ JORO Vs R
1 = 52 2 s 3= o7 3
52 - 73111 B — vas
— jw:u'O’YshZ
“ 32 - 72112
3
JWko Y Jwro N,
zo(p) = k(z) — pz; 2(0) = €7k% — 102
2 2 2 . 2 .
€ ko — B° = —vaun € kg — 52 = —7?}12’
EehSk% - 52 = _’th3
ko — 8% — 0 = —vis ekt — 8%~ o= —nj;

v :kQV62 — €3

where €., €., €3 are the effective dielectric constants
(TE polarization) of the slabs 1, 2, and 3, respectively.
Having obtained the two port impedance operators for
each uniform section of the waveguide as given by (11),
we are now in a position to consider the cascade of steps
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in Fig. 1. From (11) the relationship between the trans-
verse fields at x; and x;, ; can be written as

[E(x,, ») } {ZAY? —ZA({?} {—H(x,, » } 12
E(xi+15 }’) Zgl) —Z(lll) _H(xz+ls Y)

If the continuity of the transverse fields is translated in to
the continuity of voltages and currents at the interface
plane x; and the interface field is approximated by a scalar
function, then the cascade of steps in Fig. 1 can be rep-
resented by an equivalent ‘T’ network shown in Fig.
2(a). In this formulation the interaction via the propagat-
ing air and substrate modes between non adjacent discon-
tinuities is built in to the model, as E(x;, ¥) in (12) rep-
resents the total transverse field at x;. If we disregard
interaction via propagating continuum modes, then the
equivalent network reduce to that of Fig. 2(c). The ap-
plication of this theory to the analysis of coupled and mul-
tiple coupled guides will be treated in Section III.

LSM ANALYSIS

By placing an electric wall at x = 0 and x = L in Fig.
3, and by development analogous to that of LSE case we
obtain a “‘two-port’> Green’s short circuit admittance
operator for the length of the waveguide 0 < x < L given

by
{—H(o, y)} _ [):711 ﬂ [E(o, y)} o)
—H(L, y) Y, Yp || EWL,Y)
where, ¥, = —%,; and Py = =¥,

The various quantities occurring in (13) are dual to
those occurring in (11) with

Yiu(y, ') = yoo coth (v L) 92(¥) 2(¥")

oo

+ H};g SO Yo(p) coth (y,L)

* ¢ept2(y’ p) ¢’e;12(y’s p) dp

+ SO Yo(0) coth (n.L) .(y, 0)
© @2y, 0) do (14)

and

Y50(3, ¥') = Yoo cosech (ys2 L) D0a(3) 2(y")

(-3

+ % S Yo(p) cosech (y,L)
#=e,0 0

) ¢E/,L2(y’ P)d’euz(}”, P) dﬁ

+ SO Yo(0) cosech (1,L)b,2(y, o)

* (Y, 0) do. (15)

The driving point admittance operator of slab 1, 3 is given
by

Yi(3,Y") = Yo YD ¥a(y')
+ ugo SO %(P)‘Pe,ﬂ()@ p)¢eul(y,? p) dp
+ SO )’0(0)%1()’, 0)¢el(y,3 0) dO’ (16)
and
Y3(y, ¥') = Y3 ¥es(0) ¥e3(y")

+ X

w=e.0

SO }’O(P) Iibeu.’)(ya P) ‘!/e;LS(y” P) dp

v
+ SO yO(U) ¢e3(y5 0) %3(}", 0) d(f. (17)
In (14) to (17) the wavenumbers and modal functions are
those appropriate to the TM case. The various admittance
occurring in (14) to (17) are given by

Yor = jweO'Ysel D Yoy = jw€07se3 D Yy = ijO’YseZ
oL — 52 R 03 — 3 02 — 52 K]
Bg° - Vset BZ = Ysed B - Yse2
JWEQYe jweoﬁe
Yo(p) K= p? Yo(0) okl — o
and the wavenumbers are given by
2 . 2 .
eeeIkO - BZ = _'Y%ela 6eeZk(z) - 6 = _7322’
eeeSk% - Bz = —'Y§e3
ki — B2 —p? = =4k eki— B -0’ = -

v = ko\/Ez — €3

where €., €,.2, €3 are the effective dielectric constants
(TM polarization) of the slabs 1, 2, and 3, respectively.

Using (13) and translating the continuity of the trans-
verse fields at each port in to the continuity of voltages
and currents and approximating the interface field by a
scalar function we recover the equivalent network for the
cascade of steps as shown in Fig. 2(b). The application
of the theory to the analysis of coupled structures will be
discussed in Section III.

III. NuMEeRricaL SoLutioN ofF CouPLED Rie
WAVEGUIDES

Directional Couplers

The cross sectional geometry of a straight rib wave-
guide directional coupler is shown in Fig. 4(a). The two
guides are identical. The field distribution of this structure
shown in Fig. 4(b) comprises the even and odd modes
propagating along the coupler with propagation constants
8. and B, respectively. Including time and z-dependence
the even and odd mode amplitudes may be expressed as
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Zyy-2y T2y Z3y-Zy Zn-Zy Zu-Zy Zu-Zy

(©)
Fig. 4. (a) Cross sectional geomeiry of straight rib waveguides directional
coupler; (b) The even (E)) and odd (E») field distribution of the structure;
(c) Equivalent network modeling of the directional coupler.

Be2)
B,2).

By linearity the response of the structure is given by the
superposition of the even and odd mode responses. If the
even and odd modes are excited with equal amplitudes we
have, for guide 1,

for the even mode E(z) = cos (wt —

for the odd mode E(z) = cos (wf —

E(z) = A cos (ot — 8,2)

= 2A cos <wt - &%@’z> cos <Be 5 Bo >

= 24 cos (wt —

B.2) + A cos (wt —

82) cos (cz)
for guide 2,

E;(2) = A cos (wt — B,2) — Acos (wt — 3,2)

_ 6e + 6OZ> sin <_ 6e - 60
2 2 ¢

24 sin (wt — fBz) sin (—cg).

Along the length of the coupler L,, the relative phases of
the two modes will reverse and at this point the mode
fields reinforce each other in the opposite sense, account-
ing for the transfer of power between the two guides of
the coupler. For this to occur,

cos <Be ; B, t> —0

6e_B°L,=mr

24 sin <wt

1

(18)

where L, is the transfer length for maximum power trans-
fer.

If even and odd modes are not excited with equal am-
plitudes, then, when the two modes are out of phase, can-
cellation in one of the guides will not be complete. Hence,
a small amount of power will be left which may contribute
to the crosstalk. In this work emphasis is given to the de-
termination of transfer lengths, a useful parameter re-
quired to characterize the coupler and the problems of
crosstalk are not pursued further. Most practical struc-
tures are considered to be strongly coupled. For example,
short transfer lengths are desired for small and fast
switches. The key to evaluating the transfer length of a
coupler is the calculation of 8, and 8,. Hence, an appro-
priate technique accurate for strongly coupled situation is
highly desirable to determine the propagation constants.
This is done using the theory developed in the previous
section, The equivalent network modeling of the structure
is shown in Fig. 4(c). In this case, solving the coupled
structure reduces to that of solving the equivalent net-
work. This is achieved more effectively by cascade mul-
tiplication of the transfer matrices of the individual net-
works. The transfer matrix relates voltages and currents
at the LHS ports to the RHS is given by

7= |:le22_11 ~ZuZnZs' + ZAlz}

=1, L
Zy ~Z3' 7y

The z-directed propagation constants 3, and (3, of the even

and odd modes respectively are determined from the

transverse resonances condition applied at a chosen ref-

erence point. By using simple network theory and choos-

ing reference point at x = 0, we obtained the scalar dis-
persion equation given by

2, + Zy = 0; for LSE polarization
¥, + ¥y = 0; for LSM polarization

where Zyy and Ypy is the input impedance and admittance
respectively looking to the right of x = 0. Solving the
dispersion equation yields the propagation constants 3,
and 3,.

In order to demonstrate the accuracy of the present
technique we consider first the directional couplers ana-
lyzed by [8] using the Finite Difference Method. The pa-
rameters describing the directional couplers analyzed in
[8] are given in Table I. The results of the present analysis
together with those of FDM and the EDC method are
summarized in Table II. Simulations indicate that both
present and FDM analysis results agree very well and
prove the accuracy of the present method. The results of
the EDC agree very well with the present and FDM anal-
ysis only for small rib height. As shown in Table II, the
present method does not produce the odd mode index for
the third structure. This is because the odd mode for this
structure is cutoff and the mode index is complex. This
argument is justified by examining the index of the odd
mode predicted by FDM analysis 8,/k, is less than the
EDC of the outer slab ve,,. The computer program used
in the present analysis is developed to predict real mode
index B,/kq in the range Ve, < B, o/ ko < Ve
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TABLE 1
PARAMETERS OF THE DIRECTIONAL COUPLER WHICH HAVE BEEN ANALYZED

Rib Guide D d L S A
Structure n ny na um pm wm um um
1 3.44 3.34 1.0 1.3 0.2 20 2.0
2 3.44 3.36 1.0 1.0 09 3.0 2.0 1.55
3 3.44 3.435 1.0 60 35 40 2.0
TABLE II
MoDAL REFRACTIVE INDICES OF EVEN AND ODD MODES IN DIRECTIONAL COUPLER STRUCTURES
TRD Using
Mode
Structure Indices Fig. 2(a) Fig. 2(c) FDM [8] EDC
B./ko 3.388841027 3.388838939 3.391472377 3.390322424
STt B./ko 3.388841027 3.388838350 3.391470106 3.390322421
L, [mm] — 1314.57 341.0 300000.0
B./ko 3.395739365 3.395739353 3.396053426 3.395914969
ST2 B,/ ko 3.394802846 3.394802837 3.395097562 3.394954357
L, [mm] 0.827 0.827 0.811 0.807
B./ko 3.436820329 3.436806957 3 437034755 3.437661171
ST3 8./ko — — 3436459357 3.437072754
L, [mm] — — 1.347 1.317
TABLE III

This is not a limitation of the method and if complex
algebra is used in the computer program it should be able
to yield a complex index for this mode. However, this
problem is not pursued further as emphasis in this work
is focussed on the determination of transfer length of cou-
pled guides. In order to assess the effect of the propagating
continuous modes on the transfer length of coupled guides
at optical frequencies, we compare the results of the anal-
ysis using equivalent networks in Fig. 2(a) and Fig. 2(c).
The parameters of the structure examined in this exercise
aren; =344, n, =340,n;=1.0,D=1um, L =3
pm, A = 1.15 pm, S = 2 pum and d varying. The results
of the simulations are summarized in Table III. Simula-
tions indicate that the effect of the propagating continuous
modes on the transfer length is small even for well con-
fined modes. This observation shows that at optical fre-
quencies with n; >> n;, the interaction via the continu-
ous modes is small and can be neglected. Hence, it is
possible to obtain accurate results by considering inter-
action via the surface modes only and using the simpler
equivalent network Fig. 2(c).

Having established the accuracy of the technique, we
are in a position to consider some numerical results that
can be utilized as design data. The parameters of the cou-
pled structure considered are shown in the figure. The
variation of the modal indices of the even and odd modes
as a function of the guide separation § is shown in Fig.
5. The even and odd mode indices are above and below
the single guide index, respectively. For small guides
separation S, i.e., for strongly coupled system, the differ-
ences of even and odd modes indices from the single guide
index are not equal and hence 8 # (8. + B8,)/2.

COMPARISON OF MODAL REFRACTIVE INDICES OF EVEN AND ODD MODES
AND TRANSFER LLENGTH OF DIRECTIONAL COUPLER STRUCTURE FOR
DIFFERENT OUTER SLAB HEIGHT

d Mode Using Model Using Model Difference
um Indices Fig. 2(a) Fig. 2(c) %
B./ko 3.412597677 3.412595607
0.3 B./ko 3.412551746 3.412549877
L, [mm] 12.5272 12.5739 0.37
B./ko 3.413685884 3.413685555
0.6 B./ko 3.413535726 3.413535438
L, (mm] 3.831 0.025
B./ko 3.415891467 3.415891456
0.9 B,/ ko 3.415203392 3.415203383
L, [mm] 0.835666 0.835666 0

As the guide separation § increases both (,/k, and
B,/ ko appear to approach the single guide index and for
sufficiently large S they become almost equally spaced
from (3 / ky. This behavior is consistent with the prediction
of coupled mode theory and 3 can be accurately predicted
by 8 = (8, + B,)/2. This occurs when the coupling is
loose. This observation shows that, for a strongly coupled
system, coupled mode theory is less than accurate and
more rigorous analyses such as the present method should
be used. The transfer lengths can be calculated using the
data in Fig. 5 and the plot of L, versus § is shown in Fig.
6. The transfer length increases exponentially with in-
creasing S. This shows that coupling decreases exponen-
tially as § is increased. This behavior is direct conse-
quence of the fact that fields decay exponentially outside
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Fig. §. Variation of the normalized modal indices of the even and odd
modes as a function of the guide separation S for directional coupler. V-
even mode, V,-odd mode, V-mode of single guide. The values of the pa-
rameters of the directional coupler ST4 are: n, = 3.44, n, = 3.40, n; =
1.0,D=1um,d=09pum,L =3.0um, A = [.15 ym.
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Fig. 6. Variation of the transfer length L, as a function of guides separation
§ for directional coupler ST4.
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Fig. 7. Variation of /n(L)) as a function of guides separation S for direc-
tional coupler ST4.

the guides. Their decay constant may be predicted from
the gradient of the plot of /n(L,) versus S given in Fig. 7.

THREE GUIDE-COUPLERS

A symmetrical three guide-coupler composed of three
identical rib waveguides in close proximity is shown in
Fig. 8(a). The individual waveguides are assumed to be

(a)

(b)

Fig. 8. (a) Cross sectional geometry of three 1dentical rib waveguide cou-
pler; (b) The transverse field profiles of the overlapping guides modes and
the modes of the coupled structure.

single moded. Before applying the present method of
analysis, it is instructive to consider the modal character-
istics of this structure. The transverse field profiles of the
overlapping guides modes and the modes of the coupled
structure in Fig. 8(a) are shown in Fig. 8(b). The coupled
structure has three modes, two are even with propagation
constants 3; and 3, and one is odd with propagation con-
stant B5. In [11], a similar configuration has been ana-
lyzed using the EDC technique and it has been shown that
the propagation constants of the three modes obey the fol-
lowing conditions:

B, >B
B, > B

B3 = f;  depending on the guide parameters

B3 =B) = (B —B) or (B, —P) 19)

where § is the modal propagation constant of a single iso-
lated rib waveguide.

There are two possible ways to excite the structure in
Fig. 8(a). In the first case, the structure is excited sym-
metrically through the center guide and this configuration
may be used as a power divider. In this case only modes
1 and 2 are excited, such that at z = 0 their fields are in
phase i.e., additive in the center guide and subtractive in
the outside guides. At some distance z down the line,
modes 1 and 2 get out of phase, their fields interfere de-
structively in the center guide and constructively in the
outside guides, accounting for the transfer of power from
the center guide to the outside guides. This occurs at mul-
tiples of the coupling length given by [11],

T
L, =—.
OB -8
In the second case, the three guide coupler is excited an-
tisymmetrically through either one of the outer guides.
Such configuration may be used to transfer power from
one of the outer guides to the other outer guide. The fea-

(20)



ROZZI et al.: RIGOROUS ANALYSIS OF MULTIPLE COUPLED RIB WAVEGUIDES 713

sibility of using such device as an improved sampler has
been demonstrated in [12]. At z = 0, modes 1 and 2 are
excited out of phase so that they are in antiphase in the
centre guide and in phase in the outer guides. Mode 3 is
excited so it is in phase with modes 1 and 2 in the input
outer guide and antiphase in the other outer guide. In this
case, the situation is more complex and beats periodic with
distance down the coupler can only be obtained with high
power transfer efficiency between guides if the phase ve-
locities of the modes are related to each other in a simple
manner. Under the condition of loose coupling most of
the power will be transferred from one outer guide to the
other at a length given by [11]
27

L, = —m
BB
i.e., the coupling length is twice that required to sym-
metrically transfer power from the center guide to the two
outer guides.

Again the key parameter in the analysis of the three
guide coupler is the accurate evaluation of 8, 8, and 3.
In this numerical example, three guides of the geometry
used in the previous example will be analyzed. The re-
sulting equivalent circuit is similar to that of Fig. 4(c) but
includes two additional network sections corresponding to
the third guide. Solving the equivalent circuit yields all
the 8’s values. Equation (19) is used as a reference in the
identification of 8 values for the two even modes and odd
mode. The variation of the effective indices of the even
modes and odd mode as a function of separation between
the guides § are shown in Fig. 9. The straight line is the
effective index of the single isolated rib waveguide. Using
Fig. 9 the length required to transfer power from the cen-
ter guide to the outer guides, L., can be calculated using
(20) and that to transfer power from one of the outer
guides to the other, L,,, can be obtained from (21). The
variation of In(L,) and In(L,,) as a function of guides sep-
aration S is plotted in Fig. 10. In Fig. 11 the variation of
the transfer length of the three guide coupler and of the
directional coupler is shown as a function of guides sep-
aration S. Comparing the two curves, it can be scen that
for strongly coupled structures the ratio of the two transfer
lengths is between 1.45 and 1.5.

Only for loosely coupled structures does the ratio be-
come very close to \/5, i.e., the prediction of coupled
mode theory. There are two points to be noted from this
observation. Firstly, accurate analyses should be em-
ployed even for most practical devices. Secondly, one
must beware when using data derived from two guide
couplers to design devices with three guide couplers. In
fact, a simple V2 relationship between the transfer lengths
predicted by coupled mode theory does not hold for
strongly coupled situations.

@n

Strongly Coupled Unequal Guides

The theory developed in Section II applies not only to
structures with identical rib waveguides but also to struc-
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Fig. 9. Variation of the normalized modal indices of the even and odd
modes as a function of guides separation S for three guide coupler. V., V-
even modes, V;-odd mode, V-mode of single guide. The values of the pa-
rameters of the three guide coupler ST5 are: n, = 3.44, n, = 3.40, n; =
1.0,D=1pum,d = 0.9 pgm, L = 3.0 pm, A = 1.15 pm.
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Fig. 11. Variation of the transfer length of the three guide coupler STS L.,
(Curves A and B) and of the directional coupler ST4 L,, (curves C and D)
as a function of guides separation S. Continuous lines refer to LSE analy-
sis; dashed lines refer to LSM analysis.

tures with rib guides of different dimensions. As an ex-
ample, we Investigate the propagation constants of
strongly coupled unequal guides where the geometrical
dimensions of guide 1 are fixed and the rib width or rib
height of guide 2 varies. The other dimensions of guide 2
are fixed. The optical parameters of the guides are n, =
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Fig. 12. Variation of the normalized modal indices (LSE) of the modes as
a function of guide spacing for closely coupled nonidentical guide. Curve
V, and V, are V’s for uncoupled guide of L = 3.0 pm and 4.0 um, respec-
tivelyand D = D’ = 1.0 pm, d = 0.9 pm. Continuous line (V, V,): L =
30pum, L’ =40 pm,d =09 pum, D = 1.0 pm, D’ = 1.0 pm. Dashed
line (Vi, V3): L=30pm,L' =4 0pm,d =09 um,D = 1.0 ym, D' =
1.2 pm.

3.44,n, = 3.40,n; = 1.0, and A = 1.15 ym. Their geo-
metrical dimensions are reported in the figure. The results
for the modal indices as a function of the guide separation
are shown in Fig. 12. From the figure, it can be seen that
the fundamental modes of the two rib waveguides are not
synchronous where each of the two modes favors one of
the two rib waveguides. Thus, each mode is nearly equal
to the mode of one or the other rib waveguide taken in
_isolation. For sufficiently large guides separation the two
guides decoupled. These two fundamental modes would
have even and odd symmetry if both rib waveguides were
identical. From this observation it can be seen that in or-
der to achieve a nonidentical guides coupler the two guides
ought to be strongly coupled and in synchronism so that
the two modes can be superimposed such that at the input
end of the coupler their fields nearly cancel in one guide
while they reinforce each other in the opposite guide. At
a distance L, = 7 /(B8, — B,) the mode fields reinforce
each other in opposite sense, accounting for the transfer
of power between the two guides. In order to achieve syn-
chronism of the two guides the rib width or the rib height
may be adjusted.

Waveguide Arrays

An array of coupled rib waveguides is shown in Fig.
13. This configuration has been used to design coupled
laser arrays [13]. The operation of coupled waveguide ar-
rays is more complicated than that of a two or three-guide
coupler because of the higher number of modes which can
exist in the structures. If the individual guides are single
moded, then the number of possible guided modes of cou-
pled arrays is generally equal to the number of guides in
the array [10]. The propagation constants of the structure
can be obtained by using the theory developed in Section
II. In the case of finite arrays, the numerical evaluation
of the propagation constants is similar to that of a three
guide coupler with little additional computation. The in-
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Fig. 13. (a) Rib waveguide arrays: (b) Equivalent circuit representation
for the unit element of the periodic structure.

crease in computation time is small since we are dealing
with only an additional multiplication of the transfer ma-
trices and there is no need to calculate an additional
equivalent circuit parameters. }

If the array is large and periodic we may approximate
its propagation constant, in a manner similar to the deter-
mination of the propagation constant of a cascaded trans-
mission line. To solve a periodic structure let consider the
unit element of the periodic structure and its equivalent
circuit shown in Fig. 13. The relationship between volt-
ages and currents at A and A’ is given by

HESH

where T is the transfer matrix for each uniform section,
already derived in Sections II and III.
The periodicity condition requires

= e—ijl |:V:i
LI

where [ is the length of the period and K, is the propaga-
tion constant of the periodic structure. Substituting (23)
in to (22) gives the approximate eigenvalue equation for
the periodic structure, that is

Tl‘l . T2—1 V —_ e_jK.rl V .
I 1

1V. CoNcLUsION

22)

23)

(24)

In this contribution we develop a simple and effective
rigorous solution for coupled rib waveguides. The prob-
lem is seen as that of cascaded step discontinuities in the
transverse direction. The use of a “‘transition function’’
at the discontinuities interface not only simplifies the cal-
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culation, avoiding the use of matrices but it also yields a
simple cascaded two port network representation of the
coupled structure.

The accurate determination of the propagation con-
stants of the modes of the coupled structure is very im-
portant in determining the coupling between waveguides.
The method developed in this work is believed to be ac-
curate and is valid under all circumstances of both strong
and weak coupling. The accuracy of the method was dem-
onstrated by comparing the results with the results of FDM
calculations. Numerical examples were carried out and,
where comparison is available, it has been found the
method yields results that compare very favorably with
those produced by FDM. Numerical simulations also
show that the results of coupled mode theory agree with
our accurate results only for weakly coupled structures.
As most practical devices are in fact tightly coupled, more
accurate analyses such as the present method, should be
employed in their study. The additional computational ef-
fort required to analyze multiple guide couplers including
arrays and non-identical guides using the present method
is only marginally higher than that required for a single
guide. This is the important advantage of this method over
numerical methods where the computational effort in-
creases as the area of the cross section increases.
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