
706 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,VOL. 40, NO. 4, APRIL 1992

Rigorous Analysis of Multiple Coupled Rib

Waveguides
Tullio Rozzi, Fellow, IEEE, M. N. Husain, and Leonardo Zappelli

Abstract—The generaI problem of multiple coupled rib wave-

guides, where energy may be leaked from one guide to the other

via the substrate and radiation mode, is of great practical and

theoretical importance. Rigorous results including substrate

and air modes coupling are hard to find for the general case of

coupling of two or more different guides, due to the consider-
able complexity arising. In this contribution, we develop the

analysis in terms of a cascade of the transverse steps, utilizing
a variational solution with a single trial function and making
explicit use of edge singularities at the dielectric corners in or-
der to produce an effective and rigorous solution. Multiple cou-

pled rib guides are then reduced to a cascade of interacting step
discontinuities in the transverse direction, Where comparison
is possible the numerical results obtained by the method are

seen to be as accurate as those obtained by the FEM/FDM

methods, but with a fraction of the computer time and memory
involved.

I. INTRODUCTION

c OUPLED structures play a very important role in the

field of millimeter waves and integrated optics. Ar-

rays of coupled dielectric antennas are interesting for mil-

limetric applications and laser arrays may be realized us-

ing coupled rib guides. The feasibility of fabricating such

devices using coupled guides has been demonstrated and

the near field and propagation characteristics of such ar-

rays are already of great practical importance in integrated

optics. As a consequence, accurate theoretical analyses of

coupled structures are essential to the design of devices

that meet specific requirements and criteria.

Coupled rib guides in a parallel plate configuration have

been studied in [1] by transverse mode matching. There

are no truly exact analytical method available for the anal-

ysis of multiple coupled rib waveguides in the open con-

figuration. Approximate methods currently in use have

mostly relied on either the EDC method [2]–[4], or cou-

pled mode theory which is appropriate for weakly coupled

systems [5]. The approach in [5] assumes the individual

guided modes to be orthogonal in the coupled structure.
An improved coupled mode theory [6], [7] which re-

moves the assumption is also available. However, the

EDC and the coupled mode theory fail to model the ef-

Manuscript received March 11, 199 1; revised October 24, 1991.

T. Rozzi and L. Zappelli are with the Dipartimento di Elettronica ed
Automatic, University+ degli Studi di Ancona, 60131 Ancona, Italy.

M. N. Husain is with the School of Electrical Engineering, University

of Bath, Bath, U.K.

IEEE Log Number 9106057.

Fig. 1. Geometry of the coupled rib waveguides

fects arising from leakage of energy via the substrate and

the air regions, particularly, in the millimetric case, This

effects may also be significant at optical frequencies, par-

ticularly if the rib height is large, where the interaction

effects via the continuum cannot be neglected. For more

accurate results, sophisticated numerical techniques such

as Finite Element Method or Finite Difference Method are

used [8]. The most important drawbacks of this approach,
is the excessive computational effort needed for accurate

results, as the area and hence the number of mesh points

is doubled with respect to that needed to analyse a single

guide. Moreover, FEM/FDM become extremely cumber-

some for situations more complex than that of two iden-

tical closely coupled guides, as shown for instance in Fig.

1. This is the typical problem we are addressing in this

contribution. We are considering pure LSE and LSM

polarizations but extension to the hybrid case is straight-

forward though more cumbersome. The approach adopted

in this work is consistent with that used in [9] for the sin-

gle guide. The analysis is followed by application to the

case of the directional coupler, three guide coupler,

closely spaced unequal guide and wave guide arrays.

Wherever possible, results of the present method and of

the FEM/FDM analysis are compared to demonstrate the

effectiveness and the accuracy of the method. As will be

shown, the method of analysis presented in this work

yields accurate results with a computational effort only

slightly greater than that needed to analyse a single guide

according to [9].

II. THEORETICAL APPROACH

The cross sectional geometry of coupled rib wave-

guides under consideration is shown in Fig. 1. In the

framework of Transverse Resonance Diffraction (TRD),

this configuration is seen as that of four cascaded step

discontinuities in the transverse direction. Our aim is to
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derive a variational solution of the step problems that uti-

lizes a single test function, the “transition function” de-

veloped in [9] in order to expand the unknown interface

field. Using a single test fuhction at the interface yields a

simple two port equivalent network representation of the

coupled structure such as shown in Fig. 2. Consequently,

the analysis of the transverse cascade reduces to that of

solving the two port network, which is easily effected by

standard network technique. In order to derive the varia-

tional expression for the parameters of the two port net-

work shown in Fig. 2, let consider the cross sectional ge-

ometry of Fig. 3 which represents the basic building

component of the coupled structure in Fig. 1. [n this case,

the analysis is complicated by the presence of the two step

discontinuities at x = O and .x = L (see Fig. 3). Consid-

ering the transverse propagation of LSE and LSM modes

in such a structure, at each step discontinuity, continuous

modes are excited and multiple reflections of these modes

occur between the two steps. In applying standard trans-

verse resonance to this situation, interaction via the con-

tinuous modes is ignored, i.e., a small step approximation

is assumed. If this is done, then the uniform region and

the step discontinuity can be represented by a transmis-

sion line and ideal transformer, respectively. Interaction

via the continuum between the steps at x = O and x = L

of Fig. 3, however, is not representable by means of a

finite number of transmission lines coupled at the discon-

tinuities, as in a closed waveguide.

Hence, we abandon the transmission line analogy and

adopt instead a two-port, “Tee” representation of each

region between two successive steps. Its open-circuit

impedance, short-circuit admittance parameters are ob-

tained by placing a magneticlelectric wall at x = O, L in

turn. Under “open circuit” and “short circuit” condi-

tions at x = O, L, integral operators are found relating the

total E and H fields at various ports and then these are

used to relate the total fields at each port to one another.

This operator method was introduced in [10] in the treat-

ment of cascaded longitudinal step discontinuities in slab

waveguides. In that approach the field at each interface

was developed in terms of a suitable set of expanding

functions, a variational expression was derived and mul-

tiport analysis was finally used to model the cascade. Al-

though those concepts seem directly applicable to the

present problem, numerical effectiveness in solving a

transverse resonance equation would be limited by the size

of the network matrix, containing integrals over the con-

tinuum in each element. Moreover, the interface fields in

the longitudinal step discontinuities are complex and con-

sequently a complex trial field is needed to accurately ex-

pand them. Hence, a solution based on Galerkin’s method

is more appropriate to that situation. By contrast, in the

present case, losslessness of the bound mode requires the

interface fields at the transverse step discontinuities to be

real. This suggests that the interface field be represented

by a suitable real function. In this work, the interface field

is approximated by a single “transition function, ” inclu-

sive of the edge conditions in the LSM case as in [9]. As

(a)

Y21 %

ErFIE{2i’mIly
(b)

dk$cii”hl”
(c)

Fig. 2. Equivalent network representation of the coupled structure: (a) LSE

case; (b) LSM case; (c) Neglecting interaction via continuous modes.

1 4

REGIION 1 ; REGION 2 ; REGION 3

Fig. 3. Unit cell of the coupled structure showing double step disconti-
nuityy in the transverse .x-direction.

a consequence the numerical complexity of the problem

is substantially reduced, avoiding the use of matrices al-

together. Furthermore, this formulation leads to an equiv-

alent network model of the structure represented by a cas-

cade of “T” or “x” two port networks as shown in

Fig. 2.

LSE ANALYSIS

Consider the situation where slabs 1 and 3 of Fig. 3 are

semi-infinite. The relationship between the transverse

electric E (z-directed) and the transverse magnetic field H

(y-directed) at .x = 0- is given by [9],

1

m

E(O, y) = – Z,(y, y’) [–H(O, y’)] dy’
—w

= – Z1[–H(O, y’)] (1)

where

[
Z,(y, y’) = ‘- Zol 4M(Y)?Jhl(Y’)

~

m

i- z ZC)I(P)4kpI(y, /J) Ij~pI(y’> P) @
p=e, o O

!

u

-1- 1ZOI(U) ~M(,Y, ~)k%I(y’, rJ) do . (2)
o
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Z1( y, y’) is the Green’s impedance function of the semi-

infinite slab 1. ~;, I( y ) is the modal field of the surface
wave with characteristic impedance ZOI; th.[ (Y, p) and

~~.1 (Y, P) represent the even and odd air modes with char-
acteristic impedance Zo, ( p) and ~kl ( y, u) the substrate

mode with characteristic impedance ZO1 (o).

Similarly at x = L+, we have

!

m

E(L, V) = z~(y, y’) [–H(L, y’)] dy’
—m

= .23[–H(L, y’)]

where

(3)

+ x Jm Z03(P) $,,,(Y? P) +h,3(Y’, P) @
W=e,o o

i

v

~ ZC13(U) ih, (y, 0) *h3(y’, u) do. (4)

Green’s impedance function of the semi-

4M(Y) is the modal field of the surface

+

Z,(y, y’) is the

infinite slab 3.

wave with characteristic impedance Z03; ~k,~( y, p) and

~ho3(y, P) represent the even and Odd air modes With Char-

acteristic impedance Z03(p) and ~h3( y, a) the substrate

mode with characteristic impedance Z03(CJ). The charac-

teristic impedance for air and substrate mode for slab 1

and 3 are the same given by

ZOI(P) = Z03(P) = ZO(P)

Zol (0) = 203(0) = 20(0).

~1 and 23 can be viewed as the driving-point impedance

operators of the semi-infinite slabs 1 and 3. In order to

relate the total fields at x = O and x = L in the region 2,

a magnetic wall is placed at x = O and x = L in turn and

the relationship between the transverse E and transverse

H field for each condition is derived. With a magnetic

wall at x = L, the transverse electric field E(O, y) excited

by magnetic field H(O, y) is given by

1

co

E(O, y) = Z,, (y, y’) [–H(O, y’)] dy’

—m

= Z,,[–H(O,y’)]

where

!
co

+x ZO(P) C@h (~hL)
p=e, o o

“ 4~p2(.Y, P)@h/,c2(y’, P) @

(5)

Moreover, under the same boundary conditions, we have

!

m

E(L, y) = z21(Y> Y’) [–H(O, Y’ )14’—’x

= .2?21[-H(0, y’)] (7)

where

Z21(y, y’) = Z02 cosech (7,J,2L) @k2(y) @~2(y’ )

!

m

+2 zO(P) cosech (Tk L)
p=e, o o

“ @~Y2(Y> P)%u2(Y’> p) @

1

u

+ o zo(o) cosech (qh L) @~2(y, a)

“ cP1,2(Y’, O) do. (8)

When a magnetic wall is placed at x = O, we have by

symmetry:

E(L, y) = ZZZ[–H(L, Y’)] (9)

and

E(O, y) = ZIZ [–H(L, Y’ )1 (lo)

where ~2z = –~11 and ~12 = –g21.

Combining (5), (7), (9), and (10) we obtain a “two

port” Green’s open circuit impedance operator for the

section O s x s L given by

In (2), (4), (6), and (8) we have implicitly assumed that

just one surface wave (in y) maybe supported by the slab

waveguides, and the various value of characteristic

impedances are given by

(6)

V =ko~q – e3

where ~Ch,, ~,1,2, ~=hsare the effective dielectric constants

(TE polarization) of the slabs 1, 2, and 3, respectively.

Having obtained the two port impedance operators for

each uniform section of the waveguide as given by (11),

we are now in a position to consider the cascade of steps
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in Fig. 1. From (11) the relationship between the trans- The driving pc~int admittance operator of slab 1, 3 is given

verse fields at xi and xi+ I can be written as

[E:: Y)I=[: Zm5Ll “2)by . ~J@Y,(y, y’) = :Yol J. I(Y)4.I(Y’)

If the continuity of the transverse fields is translated into
ye(p) ~wt(Y> P)~,Pl(Y’> P) dp

p=e, o O

the continuity of voltages and currents at the interface

plane xi and the interface field is approximated by a scalar

function, then the cascade of steps in Fig. 1 can be rep-

resented by an equivalent “T” network shown in Fig.

2(a). In this formulation the interaction via the propagat-

ing air and substrate modes between non adjacent discon-

tinuities is built in to the model, as E(~i, y) in (12) rep-

resents the total transverse field at xi. If we disregard

interaction via propagating continuum modes, then the

equivalent network reduce to that of Fig. 2(c). The ap-

plication of this theory to the analysis of coupled and mul-

tiple coupled guides will be treated in Section III.

LSM ANALYSIS

By placing an electric wall at x = O and x = L in Fig.

3, and by development analogous to that of LSE case we

obtain a ‘ ‘two-port’ ‘ Green’s short circuit admittance

operator for the length of the waveguide O s x s L given

and

Y3(y, y’) = Y(I3 +.3( Y)4C3(Y’ )

!
t,+ yo(~) te3(y, O) $,3( y’ , o) da. (17)
o

In (14) to (17) the wavenumbers and modal functions are

those appropriate to the TM case. The various admittance

occurring in (114) to (17) are given by

_ jclxo ‘y,el j@eo-y$,3 _ jcmo -y.,2

‘0’ – 82 – 7s.1 2 ; ’02 – 02 – 7:.22 ; ’03 = B2 – ‘YS.3

by[%3=[::ilk!] ’13)‘o(p)=e>;‘o(”)=’;;:”o*and the wavenumbers are given by
.

where, Y12 = –~21and~22 = –ill. eeelk: – P2 = –7;.1; e.,2k: – fi2 = – ‘Y;.2;
The various quantities occurring in (13) are dual to . . .

those occurring in (11) with

Yll(y, y’) = Y02 Coth (Y,e2L)@.2(Y) @.2(Y’ )

J
co

+Z YO(P) Co=ch (T.-L)
p=e, o O

- +@2(Y, P)4.Y2(Y’, P) ~P

Pu

V = kodc2 — e3

where C,.l, e..2, q,~3 are the effective dielectric constants

(TM polarization) of the slabs 1, 2, and 3, respectively.

Using (13) and translating the continuity of the trans-

verse fields at each port in to the continuity of voltages

and currents amd approximating the interface field by a

scalar functionl we recover the equivalent network for the

(14)
cascade of steps as shown in Fig. 2(b). The application

of the theory to the analysis of coupled structures will be

discussed in Section III.

111, NUMERICAL SOLUTION OF COUPLED RIB

WAVEGUIDES

Directional Couplers

The cross sectional geometry of a straight rib wave-
guide directional coupler is shown in Fig. 4(a). The two

guides are identical. The field distribution of this structure

+ Jo YO(U)cosech(v~L)4AY, U) shown in Fig. 4(b) comprises the even and odd modes

propagating allong the coupler with propagation constants

~ @,2( Y’, CT) do.

~lj) ~c and ~0, respectively. Including time and z-dependence

the even and odd mode amplitudes may be expressed as
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(b)

(c)

Fig.4. (a) Cross sectional geomet~of straight ribwaveguides directional
coupler; (b) The even (El) and odd (Ez) field distribution of the structure;
(c) Eqmvalent network modeling of the directional coupler.

fortheevenmode E(z) = cos (tit – (lCz)

fortheoddmode E(z) = cos(ut – Poz).

By linearity the response of the structure is given by the

superposition of the even and odd mode responses. If the

even and odd modes are excited with equal amplitudes we

have, for guide 1,

El(z) = ft COS (cd – ~=Z) + z’t COS(@~– BoZ)

(= 2A Cos cot –
‘ie:fi”z)cos(p’ ip”z)

= 2A Cos (d – /3z) Cos (cd

for guide 2,

EZ(Z) = A COS(tit – ~.Z) – ~ COS (tit – &Z)

(= 2A sin tit –
‘eiooz)sin(-b’i boz)

= 2A sin (cot – /32) sin (–cz).

Along the length of the coupler L,, the relative phases of

the two modes will reverse and at this point the mode

fields reinforce each other in the opposite sense, account-

ing for the transfer of power between the two guides of
the coupler. For this to occur,

cOs(KbOLf)‘0
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If even and odd modes are not excited with equal am-

plitudes, then, when the two modes are out of phase, can-

cellation in one of the guides will not be complete. Hence,

a small amount of power will be left which may contribute
to the crosstalk. In this work emphasis is given to the de-

termination of transfer lengths, a useful parameter re-

quired to characterize the coupler and the problems of

crosstalk are not pursued further. Most practical struc-

tures are considered to be strongly coupled. For example,

short transfer lengths are desired for small and fast

switches. The key to evaluating the transfer length of a

coupler is the calculation of De and PO. Hence, an appro-

priate technique accurate for strongly coupled situation is

highly desirable to determine the propagation constants.

This is done using the theory developed in the previous

section, The equivalent network modeling of the structure
is shown in Fig. 4(c). In this case, solving the coupled

stmcture reduces to that of solving the equivalent net-

work. This is achieved more effectively by cascade mul-

tiplication of the transfer matrices of the individual net-

works. The transfer matrix relates voltages and currents

at the LHS ports to the RHS is given by

[

.2,,2;1 –21,~2zfi1 + 212
T=

2~’ –2;’ %2 1

The z-directed propagation constants (3, and 130of the even

and odd modes respectively are determined from the

transverse resonances condition applied at a chosen ref-

erence point. By using simple network theory and choos-

ing reference point at x = O, we obtained the scalar dis-

persion equation given by

~1 + & = (); for LSE polarization

~1 + PIN = O; for LSM polarization

where ~lN and ~lN is the input impedance and admittance
respectively looking to the right of x = O. Solving the

dispersion equation yields the propagation constants /3,

and /3..
In order to demonstrate the accuracy of the present

technique we consider first the directional couplers ana-

lyzed by [8] using the Finite Difference Method. The pa-

rameters describing the directional couplers analyzed in

[8] are given in Table 1. The results of the present analysis

together with those of FDM and the EDC method are

summarized in Table II. Simulations indicate that both
present and FDM analysis results agree very well and

prove the accuracy of the present method. The results of

the EDC agree very well with the present and FDM anal-

ysis only for small rib height. As shown in Table II, the

Be- & present method does not produce the odd mode index for
L, = ~; n odd the third structure. This is because the odd mode for this

“=R50
where L1 is the transfer length for maximum

fer.

(18)

power trans-

structure is cutoff and the mode index is complex. This

argument is justified by examining the index of the odd

mode predicted by FDM analysis 601ko is less than the

EDC of the outer slab ~. The computer program used

in the present analysis is developed to predict real mode

index (30/ko in the range ~ < D,,. /k. < ~.
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TABLE I
PARAMETERS OF THE DIRECTIONAL COUPLER WHICH HAVE BEENANALYZED

Rib Gmde DdLS i

Stmcture n, n2 w ~m ~m ~m pm ~m

1 3.44 3.34 1.0 1.3 0.2 2.0 2.0 1.55
2 3.44 3.36 1.0 1.0 0.9 3.0 2.0 1.55
3 3.44 3.435 1.0 6.0 3.5 4.0 2.0 1.55

TABLE II
MODAL REFRACTIVE INDICES OF EVEN AND ODD MODES IN DIRECTIONAL COUPLER STRUCTURES

TRD Using
Mode —

Structure Indices Fig. 2(a) Fig. 2(c) FDM [8] EDC

be/ko 3.388841027 3.388838939 3,391472377
ST 1

3.390322424
(3,,/k. 3.388841027 3.388838350 3391470106 3.390322421

L, [mm] 1314.57 341.0 300000.0

(3,/k. 3.395739365 3.395739353 3396053426 3.395914969
ST2 (3<,/ko 3.3948d2846 3.394802837 3,395097562 3.394954357

L, [mm] 0.827 0.827 0.811 0.807

&./k. 3.436820329 3.436806957 3437034755 3.437661171
ST3 &,/k. — 3436459357 3.437072754

L, [mm] — 1.347 1.317

This is not a limitation of the method and if complex

algebra is used in the computer program it should be able

to yield a complex index for this mode. However, this

problem is not pursued further as emphasis in this work

is focussed on the determination of transfer length of cou-

pled guides. In order to assess the effect of the propagating

continuous modes on the transfer length of coupled guides

at optical frequencies, we compare the results of the anal-

ysis using equivalent networks in Fig. 2(a) and Fig. 2(c).

The parameters of the structure examined in this exercise

arenl = 3.44, n2 = 3.40, n3 = 1.0, D = 1 ,um, L = 3

pm, X = 1,15 ~m, S = 2 pm and d varying. The results

of the simulations are summarized in Table III. Simula-

tions indicate that the effect of the propagating continuous

modes on the transfer length is small even for well con-

fined modes. This observation shows that at optical fre-

quencies with n, >> n3, the interaction via the continu-

ous modes is small and can be neglected. Hence, it is

possible to obtain accurate results by considering inter-

action via the surface modes only and using the simpler

equivalent network Fig. 2(c).

Having established the accuracy of the technique, we

are in a position to consider some numerical results that

can be utilized as design data. The parameters of the cou-

pled structure considered are shown in the figure. The

variation of the modal indices of the even and odd modes

as a function of the guide separation S is shown in Fig.

5. The even and odd mode indices are above and below

the single guide index, respectively. For small guides

separation S, i.e., for strongly coupled system,, the differ-

ences of even and odd modes indices from the single guide

index are not equal and hence 8 # ((3. + P.) /2.

TABLE 111
COMPARISON OF MODAL REFRACTIVE INDICES OF EVEN AND ODD MODES

AND TRANSFER LENGTH OF DIRECTIONAL COUPLER 5TRUCTURE FOR

DIFFERENT OUTER SLAB HEIGHT

d Mode Using Model Using Model Difference
~m Indices Fig. 2(a) Fig. 2(c) %

(3e/ko 3.412597677 3.412595607
0.3 (30/ko 3.412551746 3.412549877

L, [mm] 12.5272 12.5739 0.37

Be/k, 3.413685884 3.413685555
0.6 @o/k, 3.413535726 3.413535438

L, [mm] 3.831 0.025

fie.ko 3.415891467 3.415891456
0.9 (30/ko 3.415203392 3.415203383

L, [mm] 0.835666 0.835666 0

As the guicle separation S increases both 13@/ko and

~O/ko appear to approach the single guide index and for

sufficiently large S they become almost equally spaced

from D /ko. This behavior is consistent with the prediction

of coupled mode theory and,6 can be accurately predicted

by (3 = (13, + PO)/2. This occurs when the coupling is

loose. This observation shows that, for a strongly coupled

system, coupled mode theory is less than accurate and

more rigorous analyses such as the present method should

be used. The transfer lengths can be calculated using the

data in Fig. 5 and the plot of L, versus S is shown in Fig.

6. The transfer length increases exponentially with in-

creasing S. This shows that coupling decreases exponen-

tially as S is increased. This behavior is direct conse-

quence of the fact that fields decay exponentially outside
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0.42

0.4

0.34

0.32

VI

v LSE

V2

v,

=.. -
Y . . ..= V-. =- Z=E! .

-———
v /---

2/ -’
,

I I I I I I

01234567

S [~m]

Fig. 5. Variation of the normalized modal indices of the even and odd

modes as a function of the guide separation S’ for directional coupler. V1-
even mode, V2-odd mode, V-mode of single guide. The values of the pa-
rameters of the directional coupler ST4 are: n, = 3.44, rrz = 3.40, n~ =
l.O, D= Ipm, d=0.9ym, L=3.0~m, A= 1.15~m.

u~
01234567

S [~m]

Fig. 6. Variation of thetransfer length L,asafunctlon ofguides separation
S for directional coupler ST4.

LSM

$’;! /

LSE

5-

4 I I I 1 I r

0123456’7
S [~m]

Fig. 7. Variation of bt(L,) as a function of guides separation Sfordmec-
tional coupler ST4,

the guides. Their decay constant may be predicted from

thegradient of theplotofhz(l,t) versus Sgiven in Fig. 7.

THREE GUIDE-COUPLERS

A symmetrical three guide-coupler composed of three

identical rib waveguides in close proximity is shown in

Fig. t3(a). The individual waveguides are assumed to be

(a

(b

Fig. 8. (a) Cross sec mal geometry of three Identical rib wavegulde cou-

pl~r; (b) The transverse field profiles of the overlapping guides modes and

the modes of the coupled structure.

single moded. Before applying the present method of

analysis, it is instructive to consider the modal character-

istics of this structure. The transverse field profiles of the

overlapping guides modes and the modes of the coupled

structure in Fig. 8(a) are shown in Fig. 8(b). The coupled

structure has three modes, two are even with propagation

constants (11 and /32 and one is odd with propagation con-

stant 63. In [11], a similar configuration has been ana-

lyzed using the EDC technique and it has been shown that

the propagation constants of the three modes obey the fol-

lowing conditions:

D,>f?

63 = P; depending on the guide parameters

(63 – P) = (61 – P) or ((32 – @ (19)

where (3 is the modal propagation constant of a single iso-

lated rib waveguide.

There are two possible ways to excite the structure in

Fig. 8(a). In the first case, the structure is excited sym-

metrically through the center guide and this configuration

may be used as a power divider. In this case only modes

1 and 2 are excited, such that at z = O their fields are in

phase i.e., additive in the center guide and subtractive in

the outside guides. At some distance z down the line,
modes 1 and 2 get out of phase, their fields interfere de-

structively in the center guide and constructively in the

outside guides, accounting for the transfer of power from

the center guide to the outside guides. This occurs at mul-

tiples of the coupling length given by [11],

(20)

In the second case, the three guide coupler is excited an-

tisymmetrically through either one of the outer guides.

Such configuration may be used to transfer power from

one of the outer guides to the other outer guide. The fea-
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sibility of using such device as an improved sampler has

been demonstrated in [12]. At z = O, modes 1 and 2 are

excited out of phase so that they are in antiphase in the

centre guide and in phase in the outer guides. Mode 3 is

excited so it is in phase with modes 1 and 2 in the input

outer guide and antiphase in the other outer guide. In this

case, the situation is more complex and beats periodic with

distance down the coupler can only be obtained with high

power transfer efficiency between guides if the phase ve-

locities of the modes are related to each other in a simple

manner. Under the condition of loose coupling most of

the power will be transferred from one outer guide to the

other at a length given by [11]

2X
LO, =

B1 –P2;
(21)

i.e., the coupling length is twice that required to sym-

metrically transfer power from the center guide to the two

outer guides.

Again the key parameter in the analysis of the three

guide coupler is the accurate evaluation of /3,, flz, and 13q.

In this numerical example, three guides of the geometry

used in the previous example will be analyzed. The re-

sulting equivalent circuit is similar to that of Fig. 4(c) but

includes two additional network sections corresponding to

the third guide. Solving the equivalent circuit yields all

the 6’s values. Equation (19) is used as a reference in the

identification of 6 values for the two even modes and odd

mode. The variation of the effective indices of the even

modes and odd mode as a function of separation between

the guides S are shown in Fig. 9. The straight line is the

effective index of the single isolated rib waveguide. Using

Fig. 9 the length required to transfer power from the cen-

ter guide to the outer guides, Lcf, can be calculated using

(20) and that to transfer power from one of the outer

guides to the other, LO,, can be obtained from (21). The

variation of ln(LcJ and bz(LoJ as a function of guides sep-

aration S is plotted in Fig. 10. In Fig. 11 the variation of

the transfer length of the three guide coupler and of the

directional coupler is shown as a function of guides sep-

aration S. Comparing the two curves, it can be seen that

for strongly coupled structures the ratio of the two transfer

lengths is between 1.45 and 1.5.

Only for loosely coupled structures does the ratio be-

come very close to W, i.e., the prediction of coupled

mode theory. There are two points to be noted from this

observation. Firstly, accurate analyses should be em-

ployed even for most practical devices. Secondly, one

must beware when using data derived from two guide

couplers to design devices with three guide couplers. In

fact, a simple ~ relationship between the transfer lengths
predicted by coupled mode theory does not hold for

strongly coupled situations.

Strongly Coupled Unequal Guides

The theory developed in Section II applies not only to

structures with identical rib waveguides but also to struc-

i

/
0.32 72 ‘

1

Fig. 9. Variation uf the normalized modal indices of the even and odd

modes as a function of guides separation S for three guide coupler. VI, V2-
even modes, V3-odd mode, V-mode of single guide. The values of the pa-
rameters of the three guide coupler ST5 are: n I = 3.44, ?rZ = 3.40, n, =

l.O, D= lpm, d= 0.9~m, L=3.0pm, A= 1.15~m.
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Fig. 10. Variation of /n(L,, ) and b&,), as a function of guides separation

S for three guide coupler ST5.

14

12 1
{D

/

012345678
S [&m]

Fig. 11. Variation of the transfer length of the three guide coupler ST5 Lc,

(Curves A and B) /and of the directional coupler ST4 L,, (curves C and D)

as a fnnction of guides separation S. Continuous lines refer to LSE analy-

sis; dashed lines refer to LSM analysis.

tures with rib guides of different dimensions. As an ex-

ample, we investigate the propagation constants of

strongly coupled unequal guides where the geometrical

dimensions of guide 1 are fixed and the rib width or rib

height of guide 2 varies. The other dimensions of guide 2

are fixed. The optical parameters of the guides are n I =
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Fig. 12. Variation of the normalized modal indices (LSE) of the modes as

a function of guide spacing for closely coupled nonidentical guide. Curve
Va and Vb are V’s for uncoupled guide of L = 3.0 ym and 4.0 pm, respec-

tively and D = D’ = 1.0 pm, d = 0.9 pm. Continuous line (V,, V2): L =
3.0 pm, L’ = 4.0 pm, d = 0.9 pm, D = 1.0 pm, D’ = 1.0 pm. Dashed

line (Vj, V;): L = 3. Opm, L’ = 4. Opm, d = 0.9pm, D = I.O /m, D’ =
1.2 fire.

3.44, na = 3.40, rz3 = 1.0, and h = 1.15 pm. Their geo-

metrical dimensions are reported in the figure. The results

for the modal indices as a function of the guide separation

are shown in Fig. 12. From the figure, it can be seen that

the’ fundamental modes of the two rib waveguides are not

synchronous where each of the two modes favors one of

the two rib waveguides. Thus, each mode is nearly equal

to the mode of one or the other rib waveguide taken in

isolation. For sufficiently large guides separation the two

guides decoupled. These two fundamental modes would

have even and odd symmetry if both rib waveguides were

identical. From this observation it can be seen that in or-

der to achieve a nonidentical guides coupler the two guides

ought to be strongly coupled and in synchronism so that

the two modes can be superimposed such that at the input

end of the coupler their fields nearly cancel in one guide

while they reinforce each other in the opposite guide. At

a distance Lt = T/(62 – (31) the mode fields reinforce

each other in opposite sense, accounting for the transfer

of power between the two guides. In order to achieve syn-

chronism of the two guides the rib width or the rib height

may be adjusted.

Waveguide Arrays

An array of coupled rib waveguides is shown in Fig.
13. This configuration has been used to design coupled

laser arrays [13]. The operation of coupled waveguide ar-
rays is more complicated than that of a two or three-guide

coupler because of the higher number of modes which can

exist in the structures. If the individual guides are single

moded, then the number of possible guided modes of cou-

pled arrays is generally equal to the number of guides in

the array [10]. The propagation constants of the structure

can be obtained by using the theory developed in Section

II. In the case of finite arrays, the numerical evaluation

of the propagation constants is similar to that of a three

guide coupler with little additional computation. The in-
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Fig. 13. (a) Rib waveguide arrays: (b) Equivalent circuit representation
for the unit element of the periodic structure.

crease in computation time is small since we are dealing

with only an additional multiplication of the transfer ma-

trices and there is no need to calculate an additional

equivalent circuit parameters.

If the array is large and periodic we may approximate

its propagation constant, in a manner similar to the deter-

mination of the propagation constant of a cascaded trans-

mission line. To solve a periodic structure let consider the

unit element of the periodic structure and

circuit shown in Fig. 13. The relationship

ages and currents at A and A‘ is given by
. . . .

I:]=T“‘2H

its equivalent

between volt-

(22)

where T is the transfer matrix for each uniform section,

already derived in Sections II and III.

The periodicity condition requires
— — — —

l:l=’-’lHIH(23)

where 1 is the length of the period and K. is the propaga-

tion constant of the periodic structure. Substituting (23)

in to (22) gives the approximate eigenvalue equation for

the periodic structure, that is

““Tm=e-’Krl[:l’24)
IV. CONCLUSION

In this contribution we develop a simple and effective

rigorous solution for coupled rib waveguides. The prob-

lem is seen as that of cascaded step discontinuities in the

transverse direction. The use of a “transition function”

at the discontinuities interface not only simplifies the cal-
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culation, avoiding thle use of matrices but it also yields a

simple cascaded two port network representation of the

coupled structure.

The accurate detcrniination of the propagation con-

stants of the modes of the coupled structure is very im-

portant in determining the coupling between waveguides.

The method developed in this work is believed to be ac-

curate and is valid under all circumstances of both strong

and weak coupling. The accuracy of the method was demo-

nstrated by comparing the results with the results of FDM

calculations. Numerical examples were carried out and,

where comparison is available, it has been found the

method yields results that compare very favorably with

those produced by FDM. Numerical simulations also

show that the results of coupled mode theory agree with

our accurate results only for weakly coupled structures.

As most practical devices are in fact tightly coupled, more

accurate analyses such as the present method, should be

employed in their study. The additional computational ef-

fort required to anal:yze multiple guide couplers including

arrays and non-identical guides using the present method

is only marginally hligher than that required for a single

guide. This is the important advantage of this method over

numerical methods where the computational effort in-

creases as the area of the cross section increases.
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